博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Lifting the Stone(多边形重心)
阅读量:6981 次
发布时间:2019-06-27

本文共 3158 字,大约阅读时间需要 10 分钟。

 

Lifting the Stone

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Submit  

 

 

Description

There are many secret openings in the floor which are covered by a big heavy stone. When the stone is lifted up, a special mechanism detects this and activates poisoned arrows that are shot near the opening. The only possibility is to lift the stone very slowly and carefully. The ACM team must connect a rope to the stone and then lift it using a pulley. Moreover, the stone must be lifted all at once; no side can rise before another. So it is very important to find the centre of gravity and connect the rope exactly to that point. The stone has a polygonal shape and its height is the same throughout the whole polygonal area. Your task is to find the centre of gravity for the given polygon. 

Input

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing a single integer N (3 <= N <= 1000000) indicating the number of points that form the polygon. This is followed by N lines, each containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These numbers are the coordinates of the i-th point. When we connect the points in the given order, we get a polygon. You may assume that the edges never touch each other (except the neighboring ones) and that they never cross. The area of the polygon is never zero, i.e. it cannot collapse into a single line. 

Output

Print exactly one line for each test case. The line should contain exactly two numbers separated by one space. These numbers are the coordinates of the centre of gravity. Round the coordinates to the nearest number with exactly two digits after the decimal point (0.005 rounds up to 0.01). Note that the centre of gravity may be outside the polygon, if its shape is not convex. If there is such a case in the input data, print the centre anyway. 

Sample Input

245 00 5-5 00 -541 111 111 111 11

Sample Output

0.00 0.006.00 6.00 //求多边形的重心 第一行是案例数,然后是点的个数,然后是每个点的坐标 重量均匀分布的三角形,重心  X = (x1 + x2 + x3)/3 , Y = ( y1 + y2 + y3 )/3 质量集中在顶点上的多边形,n 个顶点坐标为(xi,yi),质量为mi,则重心  X = ∑( xi×mi ) / ∑mi  Y = ∑( yi×mi ) / ∑mi 思路 : 将这个多边形转换成多个三角形,然后求出各个重心,将这些重心连起来形成个新多边形,求出重心 所以套公式就行了
1 #include 
2 #include
3 using namespace std; 4 5 struct Node 6 { 7 double x,y; 8 }node[100]; 9 10 int main()11 {12 int n;13 cin>>n;14 while (n--)15 {16 int dian;17 cin>>dian;18 double x1,x2,y1,y2;19 cin>>x1>>y1>>x2>>y2;20 21 int i;22 double x,y;23 double sumarea=0.0,sumx=0.0,sumy=0.0;24 for (i=2;i
>x>>y;27 double s=( (x2-x1) * (y-y1) - (x-x1) * (y2-y1) ) / 2;28 // s= ( (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1) ) / 229 sumarea+=s;30 sumx+=s*(x1+x2+x)/3;31 sumy+=s*(y1+y2+y)/3;32 x2=x;33 y2=y;34 }35 printf("%.2lf %.2lf\n",sumx/sumarea,sumy/sumarea);36 }37 return 0;38 }
View Code

 

 

 

转载于:https://www.cnblogs.com/haoabcd2010/p/5990927.html

你可能感兴趣的文章
0525 项目回顾7.0
查看>>
团队第二日
查看>>
Java开发工具(Eclipse中内容辅助键的使用)
查看>>
二叉树的层次遍历 II
查看>>
mongodb插入文档时不传ObjectId
查看>>
前端自动化构建工具webpack (二)之css和插件加载总结
查看>>
基础算法整理(1)——递归与递推
查看>>
Nestjs OpenAPI(Swagger)
查看>>
novaclient的api调用流程与开发
查看>>
mvc导出数据到pdf
查看>>
iOS开源JSON解析库MJExtension
查看>>
第一本的java 的小总结
查看>>
集成支付宝钱包支付iOS SDK的方法与经验
查看>>
spring-data-mongodb必须了解的操作
查看>>
Android中的JSON详细总结
查看>>
[转载]分享WCF聊天程序--WCFChat
查看>>
程序员说话技巧大放送,受教了
查看>>
Linux指令--文件和目录属性
查看>>
PHP smarty缓存
查看>>
[数位dp] spoj 10738 Ra-One Numbers
查看>>